منابع مشابه
Thermal equilibration between two quantum systems.
Two identical finite quantum systems prepared initially at different temperatures, isolated from the environment, and subsequently brought into contact are demonstrated to relax towards Gibbs-like quasiequilibrium states with a common temperature and small fluctuations around the time-averaged expectation values of generic observables. The temporal thermalization process proceeds via a chain of...
متن کاملCanonical versus noncanonical equilibration dynamics of open quantum systems.
In statistical mechanics, any quantum system in equilibrium with its weakly coupled reservoir is described by a canonical state at the same temperature as the reservoir. Here, by studying the equilibration dynamics of a harmonic oscillator interacting with a reservoir, we evaluate microscopically the condition under which the equilibration to a canonical state is valid. It is revealed that the ...
متن کاملDynamics of quantum trajectories in chaotic systems
– Quantum trajectories defined in the de Broglie–Bohm theory provide a causal way to interpret physical phenomena. In this Letter, we use this formalism to analyze the short time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play a very important role. We find that the topologies of the quantum orbits are much more complica...
متن کاملExponentially Rapid Decoherence of Quantum Chaotic Systems
We use a recent result to show that the rate of loss of coherence of a quantum system increases with increasing system phase-space structure and that a chaotic quantal system in the semiclassical limit decoheres exponentially with rate 2l2, where l2 is a generalized Lyapunov exponent. As a result, for example, the dephasing time for classically chaotic systems goes to infinity logarithmically w...
متن کاملQuantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common random matrix theory predictions within a wide “weak quantum chaos” regime. This leads to a novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The Hamiltonian matrix of the driven system does not look like one from a Gaussian ensemble, but rather it is very sparse. This s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.88.062147